On Comparison of Adaptive Regularization Methods

نویسندگان

  • Sigurdur Sigurdsson
  • Jan Larsen
چکیده

Modeling with exible models, such as neural networks, requires careful control of the model complexity and generalization ability of the resulting model which nds expression in the ubiquitous bias-variance dilemma [4]. Regularization is a tool for optimizing the model structure reducing variance at the expense of introducing extra bias. The overall objective of adaptive regularization is to tune the amount of regularization ensuring minimal generalization error. Regularization is an supplement to direct model selection techniques like step-wise selection and one would prefer a hybrid scheme; however, a very exible regularization may substitute the need for selection procedures. This paper investigates recently suggested adaptive regularization schemes. Some methods focus directly on minimizing an estimate of the generalization error (either algebraic or empirical) [1], [3], [5], [6], [7], [12], [13], whereas others starts from di erent criteria, e.g., the Bayesian evidence [2, Ch. 10], [7], [15], [16]. The evidence expresses basically the probability of the model, which is conceptually di erent from generalization error; however, asymptotically for large training data sets they will converge [15]. The papers is organized as follows: rst the basic model de nition, training and generalization is presented. Next, di erent adaptive regularization schemes are reviewed and extended. Finally, the experimental section presents a comparative study concerning linear models and feed-forward neural networks models for regression/time-series problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Optimal Utilization of Cloud Resources using Adaptive Back Propagation Neural Network and Multi-Level Priority Queue Scheduling

With the innovation of cloud computing industry lots of services were provided based on different deployment criteria. Nowadays everyone tries to remain connected and demand maximum utilization of resources with minimum timeand effort. Thus, making it an important challenge in cloud computing for optimum utilization of resources. To overcome this issue, many techniques have been proposed ...

متن کامل

On Efficiency of Non-Monotone Adaptive Trust Region and Scaled Trust Region Methods in Solving Nonlinear Systems of Equations

In this paper we run two important methods for solving some well-known problems and make a comparison on their performance and efficiency in solving nonlinear systems of equations‎. ‎One of these methods is a non-monotone adaptive trust region strategy and another one is a scaled trust region approach‎. ‎Each of methods showed fast convergence in special problems and slow convergence in other o...

متن کامل

روش‌های تجزیه مقادیر منفرد منقطع و تیخونوف تعمیم‌یافته در پایدارسازی مسئله انتقال به سمت پائین

The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...

متن کامل

Robust Fuzzy Content Based Regularization Technique in Super Resolution Imaging

Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...

متن کامل

Combination of Adaptive-Grid Embedding and Redistribution Methods on Semi Structured Grids for two-dimensional invisid flows

Among the adaptive-grid methods, redistribution and embedding techniques have been the focus of more attention by researchers. Simultaneous or combined adaptive techniques have also been used. This paper describes a combination of adaptive-grid embedding and redistribution methods on semi-structured grids for two-dimensional invisid flows. Since the grid is semi-structured, it is possible to us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000